
Introduction to SAS

Programming

Christina L. Ughrin

Statistical Software Consulting

Some notes pulled from SAS

Programming I: Essentials Training

SAS Datasets

Examining the structure of SAS

Datasets

SAS Data Sets

Two Sections

Descriptor Section

Data Section

Data Set Descriptor Section

SAS Data Section

Attributes of Variables

 Name

 e.g. Status

 Type

 Numeric or Character

 e.g. Status in this example is character (T, TT,

PT, or NTT) and Satisfaction is numeric (1 to 5).

SAS Data Set Terminology

 Variables – columns in a SAS data set.

 Observations – rows in a SAS data set.

 Numeric Data – values that are treated as numeric

and may include 8 bytes of floating storage for 16 to

17 significant digits.

 Character Data – non numeric data values such as

letters, numbers, special characters, and blanks.

May be stores with a length of 1 to 32, 767 bytes.

One byte is equal to one character.

SAS Data Set and Variable

Name Criteria

 Can be 32 characters long.

 Can be uppercase, lowercase, or a mixture of

the cases.

 Are not case sensitive

 Cannot start with number and cannot contain

special characters or blanks.

 Must start with a letter or underscore.

SAS Dates

 Dates are treated as special kind of numeric data.

 They are the number of days since January 1st, 1960.

January 1st 1960 is the 0 point. SAS dates can go back to
1582 (Gregorian Calendar) and forward to the year 20000.

 Dates are displayed using a format. There are a number of
different date formats supported by SAS.

 Time is scored as the number of seconds since
midnight. SAS date time is the number of seconds
since January 1st, 1960.

Missing Data in SAS

 Missing values are valid values.

 For character data, missing values are displayed as blanks.

 For numeric data, missing values are displayed as periods.

SAS Syntax

SAS Syntax

 Statements in SAS are like sentences. The
punctuation though is a semicolon(;)rather
than a period (.)

 Most Statements (but not all) start with an
identifying key word (e.g. proc, data, label,
options, format…)

 Statements are strung together into sections
similar to paragraphs. These paragraphs in a
Windows OS are ended with the word “run”
and a semicolon.

Example of SAS Syntax

SAS Syntax Rules

 SAS statements are format free.

 One or more blanks or special characters are

used to separate words.

 They can begin and end in any column.

 A single statement can span multiple lines.

 Several statements can be on the same line.

Example of SAS Free Format

Using the free-format Syntax

rules of SAS though can make it difficult for others (or you) to read your

program. This is akin to

writing a page of text with little attention to line breaks. You may still have

Capital letters and periods, but where a sentence begins and ends may be a bit confusing.

Example of SAS Formatted

Using the free-format Syntax rules of SAS though can make it difficult for others

(or you) to read your program. This is akin to writing a page of text with little

attention to line breaks. You may still have capital letters and periods, but where a

sentence begins and ends may be a bit confusing. Isn‟t this paragraph a bit

easier to read?

SAS Comments

 Type /* to begin a comment.

 Type your comment text.

 Type */ to end the comment.

 Or, type an * at the beginning of a line. Everything

between the * and the ; will be commented.

 e.g. *infile „tutor.dat‟;

 Alternatively, highlight the text that you would like to

comment and use the keys Ctrl / to comment the

line. To uncomment a line, highlight and use the

Ctrl Shift / keys.

SAS Comments

SAS Windows

SAS Windows

Log

Editor

Explorer

Enhanced Editor Window

 Your program script appears in this window.

 You can either bring it in from a file or type the program right into the window.

 Once the program is in the window, you can Click Submit (or the running guy).

Enhanced

Editor

Output

SAS Log

 SAS Log provides a “blow by blow” account of the execution of your program. It
includes how many observations were read and output, as well as, errors and notes.

 Note the errors in red.

Output Window

SAS Library

 SAS Data Libraries are like drawers in a filing cabinet. The SAS data sets are files
within those drawers. Note the icons for the SAS library match that metaphor.

 In order to assign a “drawer”, you assign a library reference name (libref).

 There are two drawers already in your library: work (temporary) and sasuser
(permanent).

 You can also create your own libraries (drawers) using the libname statement.

Establishing the libname

libname Tina „E:\Trainings\JMP Training‟;

run;

Type the libname

command in the

Enhanced Editor.

Click on the

running icon

Viewtable Window

Data Step Programming

 SAS data set can be created using another SAS

data set as input or raw data

 To create a SAS data set using another SAS data

set, the DATA and SET statements are used.

 To create a SAS data set from raw data, you use

INFILE and INPUT statements.

 DATA and SET cannot be used for raw data and

INFILE and INPUT cannot be used for existing SAS

datasets.

Reading a SAS Dataset

DATA (name of new SAS dataset)

 SET (name of existing SAS dataset)

 Additional statements

Run;

Reading a SAS Dataset

Reading SAS Dataset

Reading Raw Data

Selecting Variables

 You can use a DROP or KEEP statement in a

DATA step to control which variables are

written to a new SAS data set.

Selecting Variables

Selecting Variables

Date Functions

 Create SAS date values
 TODAY() – obtains the date value from the system clock

 MDY(month,day,year) – uses numeric month, day, and
year values to return the corresponding SAS date value.

 Extract information from SAS date values
 YEAR (SAS-date) – extracts the year from a SAS date and

returns a four-digit value for year

 QTR (SAS-date) – extracts the quarter from a SAS date
and returns a number from 1-4

 MONTH (SAS-date) extracts the month from a SAS date
and returns a number from 1 to 12

 WEEKDAY (SAS-date) – extracts the day of the week and
returns a number from 1 to 7

Date Function – Weekday

Function

Proc Univariate

Proc Univariate

Proc Univariate

Proc Univariate

Getting started with

programming

Proc Print

Proc Print – Beginning

Procedures

 Examining data using proc print procedure.

 Display particular variables of interest.

 Display particular observations.

 Display a list report with column totals.

Default List Report

Proc print data=train.sastraining;

Run;

Printing Particular Variables

 Use the VAR statement
which allows you to:
 Select variables for your

proc print

 Define the order of the
variables in the proc
print.

Proc print
data=train.sastraining;

 var ID Department
Satisfaction;

Run;

Suppressing Obs Column

 The NOOBS option

suppresses the number

of observations column

that shows up on the

left hand side of a proc

print output.

Proc print

data=train.sastraining

NOOBS;

Run;

Subsetting Data with the

WHERE Statement

 Allows you to select particular observations based
on criteria.

 Can be used with most SAS procedures (“IF”
statements are generally used in the Data step
though).

 Operands
 Variables and Observations

 Operators
 Comparisons

 Logical,

 Special

 Functions

Comparison Operators

Mneumonic Symbol Definition

EQ = equal to

NE ^= or ~= not equal to

GT > greater than

LT < less than

GE >= greater than or equal to

LE <= less than or equal to

IN equal to one of a list

Examples of WHERE

Comparison Operators

Proc print

 data=train.sastraining

NOOBS;

 where department=

„Psychology‟;

Run;

proc print data=train.sastraining

NOOBS;

 where department=

'Psychology';

run;

WHERE Logical Operators

 And (&) Used if both expressions are true,

then the compound expression is true.

 OR (|) Used if either expression is true, then

the compound expression is true.

 Not (^) Can be combined with other operators

to reverse the logic of a comparison.

Examples of WHERE Logical

Operators

proc print data=train.sastraining NOOBS;

 where department= 'Psychology' and

years>10;

run;

proc print data=train.sastraining NOOBS;

 where department= 'Psychology' or

department='Anthropology';

run;

WHERE Special Operators

 BETWEEN-AND – Used to select

observations in which the value of the

variable falls within a range of values.

 CONTAINS ? – Used when one wants to

select observations that include the specified

substring.

Examples of WHERE Special

Operators

proc print data=train.sastraining NOOBS;

 where years between 10 and 15;

run;

proc print data=train.sastraining NOOBS;

 where Department ? 'Nurs';

run;

Column Totals

 Can provide a Total

 Can also provide subtotals if data is printed in

groups.

Example of Column Total

Proc Sort

Overview of Proc Sort

 Sorts (arranges) observations of the data set.

 Can create a new SAS data set containing
rearranged observations.

 Can sort on more than one variable at a time.

 Sorts ascending (default) and descending.

 Does not provide printed output (that requires
the proc print statements).

 Treats missing data as smallest possible
value.

Proc Sort Example

proc sort data=train.sastraining;

 by Department;

run;

proc print data=train.sastraining NOOBS;

 var Department Satisfaction Years;

run;

Printing Totals and Subtotals Proc

Sort and Proc Print Example

proc sort data=train.sastraining;

 by Department;

run;

proc print data=train.sastraining NOOBS;

 by Department;

 sum years;

run;

Page Breaks with Proc Sort

and Proc Print

proc sort data=train.sastraining;

 by Department;

run;

proc print data=train.sastraining NOOBS;

 by Department;

 Pageby Department;

 sum years;

run;

